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ABSTRACT

Phased-array radar (PAR) technology offers the flexibility of sampling the storm and clear-air regions with

different update times. As such, the radial velocity from clear-air regions, typically with a lower signal-to-

noise ratio, can be measured more accurately. In this work, observing system simulation experiments are

conducted to explore the potential value of assimilating clear-air radial velocity observations to improve

numerical prediction of supercell thunderstorms. Synthetic PAR observations of a splitting supercell are

assimilated at different life cycle stages using an ensemble Kalman filter. Results show that assimilating

environmental clear-air radial velocity can reduce wind errors in the near-storm environment and within the

precipitation region. Improvements in the forecast are seen at different stages, especially for the forecast after

30min. After assimilating clear-air radial velocity observations, the probabilities of updraft helicity and

precipitation within the corresponding swaths of the truth simulation increase up to 30%–40%. Additional

diagnostics suggest that the more accurate track forecast, stronger vertical motion, and better-maintained

supercell can be attributed to the better analysis and prediction of the mean environmental winds and linear

and nonlinear dynamic forces. Consequently, assimilating clear-air radial velocity produces accurate storm

structure (rotating updrafts), updraft size, and storm track, and improves the surface accumulated precipi-

tation forecast. The performance of forecasts with a higher frequency of assimilating clear-air radial velocity

does not show systematic improvement. These results highlight the potential of assimilating clear-air radial

velocity observations to improve numerical weather prediction forecasts of supercell thunderstorms.

1. Introduction

Supercells can produce damaging winds, hail, and

tornadoes. Numerous previous observational and nu-

merical modeling studies show that buoyancy, vertical

wind shear, and low-level moisture are important to

supercell formation,maintenance, and tornado production

(Rasmussen and Blanchard 1998; Thompson et al. 2003;

Markowski and Richardson 2014; Wade et al. 2018).

Rotunno and Klemp (1982) and Weisman and Rotunno

(2000) used idealized simulations of supercell storms to

confirm that the nonlinear interactions between envi-

ronmental wind shear and updrafts are responsible

for supercell rotation, maintenance, and propagation.

Bunkers et al. (2006) examined the environments of 440

supercell events and found that long-lived supercells

occur in environments with much stronger deep-layer
Corresponding author: Prof. Xuguang Wang, xuguang.wang@

ou.edu

SEPTEMBER 2020 HUANG ET AL . 3825

DOI: 10.1175/MWR-D-19-0391.1

� 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/02/21 01:26 PM UTC

mailto:xuguang.wang@ou.edu
mailto:xuguang.wang@ou.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


wind shear. Parker (2014) explored the near-storm en-

vironments using mobile soundings from the second

Verification of the Origins of Rotation in Tornadoes

Experiment (VORTEX2; Wurman et al. 2012) and

found that stronger vertical wind shear in the inflow

near a supercell is favorable for supercell maintenance.

Assimilating environmental observations prior to the

development of convection and throughout its life cycle

is critical to accurate numerical weather prediction

(NWP) forecasts. Previous studies have shown the im-

portance of correctly estimating characteristics of the

horizontally inhomogeneous environment for very

short-range NWP forecasts of supercell (Stensrud and

Gao 2010). As shown in Coniglio et al. (2016) during

the Mesoscale Predictability Experiment (MPEX), the

assimilation of preconvective radiosonde observations

improved the depiction of low-level dynamic and ther-

modynamic environments and created a positive impact

on the initial development and early evolution of con-

vection. Kerr et al. (2019) found that there was signifi-

cant sensitivity of supercell updraft helicity to the

increase of vertical wind shear in the inflow region of

the supercell after examining three cases from MPEX.

Despite numerous previous studies showing the im-

portance of accurately representing the storm environ-

ment for the prediction of storm evolution, current

observing systems lack the capability to spatiotempo-

rally capture details of the storm environment, such

as profiles of vertical wind shear and moisture that

are important for convective-scale weather forecasting

(NRC 2009). For example, the National Weather Service

(NWS) radiosonde network has too coarse spatial and

temporal resolutions, providing observations only twice

per day with a mean spacing of about 350km (Coniglio

et al. 2016). Although mesoscale environmental moni-

toring networks can provide observational data at higher

spatial (;50km) and temporal (every 5min) resolutions

(e.g., Oklahoma Mesonet, McPherson et al. 2007), they

provide atmospheric measurements only up to a height of

approximately 10m. Vertical extension of the current

mesonet (i.e., 3D mesonet) would be needed to fill the

gaps (NRC 2009; Chilson et al. 2019). Recent studies of

assimilating data from experimental, ground-based re-

mote sensing networks also demonstrate such a need

(e.g., Degelia et al. 2019; Chipilski et al. 2020).

Because of their ability to sample convective storms at

high spatiotemporal resolution, radar measurements of

reflectivity and radial velocity are most commonly as-

similated for convective-scale NWP (Sun et al. 2014). A

wide variety of studies have demonstrated the bene-

fits of assimilating such radar data to convective-scale

analysis and prediction (Snyder and Zhang 2003; Sun

2005; Tong andXue 2005; Xiao et al. 2005; Hu et al. 2006;

Jung et al. 2008; Lu andXu 2009; Dowell et al. 2011; Gao

and Stensrud 2012; Thompson et al. 2012; Sun andWang

2013; Johnson et al. 2015;Wang andWang 2017; Degelia

et al. 2018; Huang et al. 2018). However, most of these

previous studies generally assimilated radar reflectivity

and/or radial velocity data from precipitating regions to

investigate their impacts on forecasts. Some studies

(e.g., Yussouf and Stensrud 2010; Jones et al. 2015; Pan

et al. 2018) indicated that assimilating clear-air radar

reflectivity can suppress spurious convection around

the main storm and therefore improve the subsequent

forecast. Schenkman et al. (2011a,b, 2012) assimilated

high-spatial-resolution low-level radial velocity obser-

vations from Collaborative Adaptive Sensing of the

Atmosphere’s (CASA) IP-1 X-band radars, and found

the forecasts can accurately diagnose the low-level

shear profile and gust front structure, as well as the

subsequent prediction of mesovortex development and

submesovortex-scale tornado-like vortex. Tong and

Xue (2005) briefly indicated from their observing sys-

tem simulation experiments (OSSEs) that, if Doppler

radial velocity data in clear-air regions were available

from the WSR-88D network, assimilating these data in

addition to radial velocity data in precipitation regions

could improve the accuracy of forecast model output.

Research exploring the assimilation of clear-air radial

velocity data is limited partially because a radar has to

be operated in a relatively high-sensitivity mode (i.e.,

longer pulse and longer update time) for radial velocity

data to be useful in clear-air regions (Tong and Xue

2005; Liu et al. 2016). In the precipitation mode of

WSR-88D, the radar completes 14 elevation scans in

around 5–6min, whereas in clear-airmode ofWSR-88D,

scanning five different elevation angles takes about

10min (Sun and Wilson 2003). Therefore, for the con-

ventional WSR-88D, the high sensitivity mode is nor-

mally not operated when precipitation exists (Klazura

and Imy 1993; Melnikov et al. 2011). It implies that we

cannot get ;5-min-resolution and high-quality clear-air

radial velocity data fromWSR-88D during precipitation.

This might be one reason why previous studies only as-

similate WSR-88D radial velocity data in precipitation

regions.

In contrast, phased-array radar (PAR) technology

would enable better sampling of the radial velocity in

clear-air regions. PAR can provide a volume scan every

1min or less in contrast to the;5-min volume scan by a

WSR-88D. For example, a four-faced PAR achieves

rapid scanning by simultaneously scanning four 908
sectors (Zrnić et al. 2007) and using agile electronic

beam steering to eliminate the need for mechanical

scanning (Heinselman and Torres 2011). PAR tech-

nology is particularly important for monitoring and
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forecasting rapidly evolving severe weather events (Weber

et al. 2007; Heinselman et al. 2012; Heinselman et al. 2015;

Bowden et al. 2015). In addition to its rapid scanning

capability, PAR can adaptively steer the beam to clear-

air regions, adjust transmission parameters (pulse width,

angular sampling interval, dwell time, etc.), and switch

between clear-air and storm modes rapidly (Zrnić et al.

2019). Given the rapid and flexible scanning capability

of PAR, it is expected that PAR can scan precipitation

and clear-air regions using different scanning strategies,

such as precipitation scanning mode in precipitating

regions and high-sensitivity scanning mode in clear-air

regions. Therefore, as Zrnić et al. (2019) suggested,

PAR can provide useful measurements of near-storm

atmospheric properties, including environmental winds

in the vicinity of storms.

This study aims to address the following new questions:

d What is the impact of assimilating PAR-like obser-

vations of clear-air radial velocity on supercell fore-

casts if these observations are available in future?
d Does it matter if clear-air radial velocity observations

are assimilated at relatively low or high frequency?
d Do the benefits of assimilating clear-air radial velocity

observations vary in different stages of the storm

life cycle?
d How does assimilating clear-air radial velocity obser-

vations influence the predicted storm structure and

maintenance?

As an initial step to explore these questions, a series of

perfect-model OSSEs using an idealized supercell case

are designed and performed. Future study considering

model errors and/or more realistic convective weather

events is warranted. The paper is organized as follows:

section 2 describes the model, simulated radar, and ex-

periment design. Section 3 presents the results obtained

from the experiments and is followed by a summary in

section 4.

2. Method

In this study, perfect-model OSSEs are performed to

explore the benefits of assimilating clear-air radial ve-

locity observations to supercell thunderstorm forecasts.

Synthetic PAR observations are generated by perturb-

ing the truth run from the Weather Research and

Forecasting (WRF) Model.

a. Creation of nature run and synthetic radar
observations

The WRF V3.4.1 is used for the truth or nature run

and ensemble simulations. The truth simulation adopts

the idealized run configuration with a homogeneous

initial condition defined by the quarter-circle hodograph

sounding described in Kerr et al. (2015) and an open

lateral boundary condition (Fig. 1). The model domain

is 200 km wide in the horizontal direction with a 2-km

grid spacing. The model adopts a stretched grid in the

vertical direction with the model top at 20-km height

and an averaged vertical grid spacing of 500m. The

Thompson microphysics scheme (Thompson et al. 2008)

is used in the truth simulation. Radiation, surface-layer,

land surface, boundary layer and cumulus schemes are

not activated. A 3-K warm bubble with a radius of 10 km

and a center height of 1.5 km is placed at the domain

center to initiate a supercell thunderstorm. The re-

flectivity fields in the truth simulation show the first echo

at t5;15min.At t5;70min, the convective cell splits,

with one cell moving toward the northeast and the

other moving toward the southeast. Gradually, the left-

moving and right-moving supercells are clearly sepa-

rated, and the right-moving supercell is enhanced

and maintained until the end of the simulation at

t 5 185min.

Synthetic PAR (radar reflectivity and radial velocity)

observations are generated every 1min with a full 3608
in azimuth. To mainly capture the inflow environmental

wind fields of the right-moving supercell during the

simulation, the assumed radar is located ;25km south

of the domain center. To reduce computational expense,

coarser sampling intervals (58) are adopted. Each full

volume scan consists of 14 standard elevation angles

(Yussouf and Stensrud 2010) and synthetic observations

are generated in radar coordinates. The highest allowed

observation heights for radar reflectivity and radial ve-

locity are 14 km AGL. Note that additional sensitivity

experiments show that eliminating clear-air radial ve-

locity observations above 7 km (Zrnić et al. 2019) does

not influence the conclusions of this study due to lim-

ited availability of clear-air radial velocity observations

above 7 km near the storm region in the current OSSE

configuration due to the close range of the radar to the

storm. Following Yussouf and Stensrud (2010), the re-

flectivity observation error is drawn from a Gaussian

distribution with a zero mean and a standard deviation

of 2 dBZ. A Gaussian distribution with a zero mean

and a standard deviation of 2m s21 is used to generate

radial velocity observation error where the reflectivity

values are greater than 10dBZ (referred to as the pre-

cipitation region). Regions with reflectivity observations

less than 10 dBZ are treated as nonprecipitating (clear

air) regions. To generate radial velocity observations in

clear-air regions, a Gaussian error with zero mean and a

standard deviation of 4m s21 is used.

The standard deviation (‘‘error’’) values of 2m s21 for

precipitation regions and 4ms21 for clear-air regions
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are somewhat consistent with ‘‘worst-case scenario’’

estimates of data quality for a rapid-scan phased-array

radar, where data quality for radial velocity estimates

are assessed using Eq. (2) from Yu et al. (2007). The

variance of the mean velocity estimator (Yu et al.

2007) is

varfŷ
C
g 5

K

M2 1

(
[12 r2(T

s
)] �

M22

l52(M22)

M2 12 jlj
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r2(lT
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1
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�
12
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where ŷC is estimator of mean velocity; M is the

sample number; SNR is the signal-to-noise ratio;

K5l2/[32p2T2
s r

2(Ts)], where l is the radar wavelength;

r(lTs) is the correlation coefficient of weather signals;

and Ts is pulse repetition time (PRT). For error esti-

mates, the primary factors are spectrum width, the

number of pulses per radial, and the SNR. Assuming a

spectrum width of ;5.25m s21, a speedup factor of 2.5

relative to NEXRAD (i.e., a 2.5-fold reduction in the

number of pulses per radial), and an ;2-ms PRT,

the expected standard deviation of radial velocity is

2.2ms21 for a high SNRcase and 3.5ms21 for a relatively

low SNR of 2dB. Thus, using 2 and 4ms21 for the errors

in the precipitation and clear-air regions, respectively, is

likely a reasonable assumption for the ‘‘worst case sce-

nario’’ data quality. However, it should be noted that the

exact scan parameters (PRT, speedup factor required,

noise floor, etc.) are dependent on the final radar design

and requirements. A similar observation error standard

deviation of 4m s21 is used as an upper bound for clear-

air radial velocity observations by Lu and Xu (2009).

b. Experiment design

The assimilation experiments are conducted using a

50-member ensemble with a perfect-model assumption.

Initially, each member is created by perturbing the wind

fields of the homogeneous environment sounding with a

standard deviation of 4m s21 from the surface to 11km

FIG. 1. Initial environmental hodograph and sounding of the nature run.
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and linearly transitioning to 0m s21 at 13 km (Dowell

et al. 2004). The standard deviation of 4m s21 is roughly

consistent with the magnitude of root-mean-square er-

rors of vector wind magnitude for Rapid Refresh–Earth

System Research Laboratory (RAP-ESRL) and Rapid

Update Cycle (RUC) 6-h forecasts, verified against

rawinsonde observations over the contiguous United

States (Benjamin et al. 2016). Note that in this study all

data assimilation (DA) experiments use the same set of

perturbations supplied to the ensemble environments.

The wind profiles of the truth simulation and ensemble

members are shown in Fig. 2.

The data assimilation method adopted in this study is

the ensemble adjustment Kalman filter (Anderson 2001)

from the Data Assimilation Research Testbed (DART;

http://www.image.ucar.edu/DAReS/DART; Anderson

et al. 2009). The data assimilation parameters used in

this study are similar to those in Kerr et al. (2015).

Horizontal and vertical covariance localizations (Gaspari

and Cohn 1999) with a 12-km cutoff radius are applied to

PARobservations. Additive noise is insertedwhere radar

reflectivity observations are greater than 25dBZ (Dowell

and Wicker 2009; Sobash and Wicker 2015). It should be

noted that the localization scales in precipitating and

environmental regions are the same in this study. The

localization parameters for the environmental data as-

similation are not tuned and additional tuning to optimize

the parameter of assimilating the clear-air data should be

considered in future studies.

Previous studies (e.g., Nowotarski and Markowski

2016; Limpert and Houston 2018; Kerr et al. 2019) indi-

cated that supercell thunderstorms can induce substantial

environmental perturbations, which may in turn affect

the strength and structure of the storm. The feedback

between the storm and its environment can be sensitive

to the strength of the storm. Therefore, data assimilation

experiments are conducted in different stages of the

storm to investigate this sensitivity. The assimilation

experiments start at t 5 30, 45, 60, 75, and 90min, re-

spectively. The data assimilation is conducted with

1-min cycling for a total of 5min, followed by forecasts

out to t 5 185min. Because the idealized supercell

simulated in this study develops and matures quickly, a

5-min-wide assimilation window is selected.

There are three groups of assimilation experiments.

All three experiment groups assimilate radar reflectivity

observations (including clear air) every 1min. The as-

similation of clear-air reflectivity helps to suppress

spurious convection around the main storm (Tong and

Xue 2005; Jones et al. 2015). The radar reflectivity is

assimilated directly as a state variable in DART (Jones

andWicker 2014, 2015). In this study, we mainly want to

investigate the added value of assimilating clear-air ra-

dial velocity observations on the forecasting of supercell

thunderstorm. In addition to assimilating reflectivity

observations, the first group of experiments (hereinafter

EXP1) assimilates radial velocity observations only in

the precipitating region (observed reflectivity. 10dBZ)

using 1-min cycles. The second group of experiments

(hereinafter EXP2) is the same as EXP1, except that

clear-air radial velocity observations are also assimilated

every 5min to investigate the impact of assimilating

clear-air radial velocity observations. The third group of

experiments (hereinafter EXP3) is the same as EXP2,

FIG. 2. The (a) u and (b) y vertical wind profiles of the truth simulation (black thick line) and 50 ensemble members

(gray thin lines).
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except that clear-air radial velocity observations are

assimilated every 1min to investigate the impact of as-

similating high-time-frequency clear-air radial velocity

observations.

The timelines for all experiments with data assimila-

tion are shown in Fig. 3. The ensemble run without

data assimilation is marked as CTRL for comparison.

The observation-space root-mean-square innovation

(RMSI) and total ensemble spread (standard devia-

tion) for assimilated radial velocity observations in

precipitating and clear-air regions are compared. In

general, the ensemble is underdispersive for precipita-

tion region with a consistency ratio (Dowell et al. 2004)

of ;0.84 and overdispersive for the clear-air region

with a consistency ratio of ;1.12. Though the consis-

tency ratios deviate from the perfect value of 1, the

consistency ratios in this study are within acceptable

ranges for similar radar DA studies (e.g., Dowell et al.

2004; Dowell and Wicker 2009; Yussouf et al. 2013).

3. Results

a. Forecast skill score of reflectivity forecasts

The fractions skill score (FSS), a neighborhood veri-

fication method (Roberts and Lean 2008), is adopted to

evaluate the forecast skill of ensemble forecasts from all

four experiments. The expression of FSS is

FSS5 12

1

N
�
N

i51

(P
f
2P

o
)2

1

N
�
N

i51

P2
f 1

1

N
�
N

i51

P2
o

, (2)

where Pf and Po are the forecast and observed fraction

of each neighborhood grid box, respectively, and N is

the number of grid points in the examined domain. FSS

values range from 0 to 1. An FSS of 0 means that the

forecast has no skill, whereas an FSS of 1 means the

forecast is perfect. The FSS has been widely used for

the evaluation of high-resolution precipitation forecasts

(e.g., Mittermaier and Roberts 2010; Johnson andWang

2016; Coniglio et al. 2016; Huang et al. 2018). Figure 4

shows the ensemble mean FSS in different experiments

for a composite reflectivity threshold of 40 dBZ for a

box with a width of 8D (16 km 3 16 km; Coniglio et al.

2016). This box size of 8D is selected mainly to reduce

the influence of errors associated with spatial scales

close to or smaller than the smallest resolvable scales of

the model grid (;4–6D or less; Skamarock 2004).

Statistically significant FSS differences (at the 0.05

significance level) of EXP2 and EXP3 over EXP1 are

judged by a t test with the assumption that the ensemble

members in each run serve as independent samples

(Hamill 1999).

As shown in Fig. 4, all the experiments with data as-

similation (EXP1, EXP2, and EXP3) have much better

forecast skills than the experiment without data assim-

ilation (CTRL) for all forecast times. For the forecast

after ;30min, the experiments assimilating clear-air

radial velocity observation (EXP2 and EXP3) gener-

ally have better forecast skills than the experiment

without assimilation of clear-air radial velocity (EXP1).

This positive impact persists for all stages of the super-

cell’s life cycle. As shown in Fig. 4, it takes ;30min for

the ensemble forecast to realize the benefits of assimi-

lating clear-air radial velocity observations. This result

supports the hypothesis that increasing the accuracy of

environmental wind fields through assimilating clear-air

radial velocity can improve the prediction of a supercell

by capturing the interaction between the storm and the

environment.

Examining the two clear-air assimilation experiments

with different assimilation frequencies, the difference of

FSSs between EXP2 and EXP3 is small across different

forecast times (Fig. 4), which may be due to the rela-

tively slow change of the environmental winds com-

pared to the precipitation region during the 5-min

period. It should be noted that the slower evolving en-

vironmental winds might be associated with prescribed

homogeneous background winds in this idealized case

study. From forecasts started during the early stage of

storm (Fig. 4, top-left panel), EXP2 has a slightly higher

FSS than EXP3 after forecast times of 120min, while

FSS is slightly higher for EXP3 compared to EXP2 for

FIG. 3. Timelines of the experiments EXP1, EXP2, and EXP3

showing data assimilation (DA) from t5 30, 45, 60, 75, and 90min

to t 5 35, 50, 65, 80, and 95 (5-min DA period), respectively. The

model forecasts from the end of the DA windows to t 5 185min.
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forecasts started during the later stage of storm (Fig. 4,

bottom panel). The FSSs between EXP2 and EXP3 are

similar when forecasts started during themiddle stage of

storm (top-right and middle panels of Fig. 4).

b. Wind field errors

To diagnose the benefits of assimilating clear-air ra-

dial velocity observations, each experiment covering

five different stages of the storm is examined. It was

found that these experiments at different stages pro-

duce similar results. Therefore, the experiment in

which the assimilation period is t 5 60–65min and en-

semble forecasts start from t 5 65 to 185min is used as

an example here. The wind vector errors at both the

analysis and 60-min forecast are first calculated to ex-

amine the improvement in the wind fields. The en-

semble mean wind vector errors are calculated using

(1/50)�50

m51jVm 2VTruthj, where Vm is the horizontal

wind vector of themth ensemble member, andVTruth is

the horizontal wind vector from the truth simulation.

The ensemble mean horizontal wind vector errors at

1- and 3-km height at the analysis and the 60-min fore-

cast lead times are displayed in Fig. 5. Relative to CTRL,

assimilating radial velocity in the precipitation region

only (EXP1) significantly reduces the wind error in the

analysis within the storm and near-storm environment

(;20km from the precipitating region). Such an im-

provement is carried out to the 60-min lead time and the

FIG. 4. Ensemble-mean FSS of CTRL (black),

EXP1 (green), EXP2 (red), and EXP3 (blue) ensem-

ble forecasts starting from t 5 35, 50, 65, 80, and

95min. The circles indicate statistically significant FSS

differences (at the 0.05 significance level) of EXP2

(red circles) and EXP3 (blue circles) over EXP1.
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area of improvement is slightly expanded during the

forecast. Relative to EXP1, the area of environmental

wind error reduction is expanded significantly in both

the analysis and the 60-min forecast in EXP2 and EXP3

after clear-air radial velocity observations are assimi-

lated. Though wind errors within strong updraft regions

are similar among EXP1, EXP2 and EXP3, it is also

noted that the wind errors in the remaining part of

precipitation region are smaller in EXP2 and EXP3 than

those in EXP1 in the 60-min forecast. This result indi-

cates that the increasing accuracy of environment wind

fields through assimilating clear-air radial velocity can

FIG. 5. Ensemble mean (left),(right center) 1- and (left center),(right) 3-km horizontal wind vector errors (shaded; m s21) of the (top)

CTRL, (top middle) EXP1, (bottom middle) EXP2, and (bottom) EXP3 ensemble forecasts at 0- and 60-min forecasts starting from t 5
65min. The black contours represent the 10-dBZ radar reflectivity factor of the truth simulation. The x-filled circles indicate the radar

location. Minor tick marks are included every 10 km, and major tick marks are included every 30 km.
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also improve the accuracy of the winds within the pre-

cipitation region by capturing the interaction between

storm and environment. Consistent with the left-middle

panel of Fig. 4, the wind errors in the precipitation and

near-storm regions are slightly more accurate in EXP3

than EXP2.

The improved near-storm environment wind analysis

shown in Fig. 5 is also reflected in the sawtooth plot

(Fig. 6). As shown in Fig. 6, the primary differences in

observation-space RMSI and total spread among the

three experiments are observed in clear-air regions. The

RMSI for assimilated radial velocity observations in

clear-air regions in EXP2 andEXP3 are similar and both

smaller than that in EXP1 at the end of assimilation

period (t 5 65min; Fig. 6).

c. Probabilistic forecasts of updraft helicity and
precipitation

The 2–5-km updraft helicity (UH) is commonly used

as a parameter to identify rotating updrafts in the lower

to middle troposphere (Kain et al. 2008). The UH

probabilistic forecasts derived from an ensemble are a

FIG. 6. Observation-space RMSI and total ensemble spread (standard deviation) for assimilated radial velocity

observations in (left) precipitation regions (reflectivity . 10 dBZ) and (right) clear-air regions (reflectivity ,
10 dBZ) for (a),(b) EXP1, (c),(d) EXP2, and (e),(f) EXP3 during the 5-min data assimilation period from t 5 60

to 65min.
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useful surrogate to forecast the path of severe weather,

such as the paths of mesocyclone and tornado (Clark

et al. 2013; Cintineo and Stensrud 2013). The UH is

calculated by the product of vertical velocity and vertical

vorticity integrated between 2 and 5km above ground

level. It is given by

UH5

ðz2
z1

wz dz , (3)

where z1 5 2000m and z2 5 5000m, w is the vertical

velocity, and z 5 (›y/›x) 2 (›u/›y) is the vertical vor-

ticity. Right-moving storms are preferred in the quarter-

circle (low-level clockwise) hodograph sounding used in

this study (Markowski and Richardson 2010). To in-

vestigate the forecast skill of the track of right-moving

storm, the probability swath of the maximum positive

gridpoint UH associated with the right-moving storm is

examined. The maximum positive UH here means the

temporal-maximum value of UH at each model grid

point within the examined period (Kain et al. 2010).

Theprobability of temporal-maximumUH$ 200m2s22

in the ensemble forecasts CTRL, EXP1, EXP2 and

EXP3 starting from t 5 65 to 185min is shown in Fig. 7.

Compared to CTRL (Fig. 7a), the probability in EXP1

(Fig. 7b) increases significantly within the swaths of

temporal-maximum UH $ 200m2 s22 of the truth sim-

ulation after assimilating the radar data in precipitation

regions. With the addition of environmental clear-air

radial velocity assimilated in EXP2 and EXP3, proba-

bilities increase again within the truth UH swaths and

the probabilities decrease outside the truth UH swaths

(Figs. 7c–f). This increase of the probability within the

truth UH swaths after assimilating clear-air observa-

tions can exceed 30%, and the decrease of the proba-

bility outside the truth UH swaths after assimilating

clear-air observations can exceed 20% (Figs. 7e,f).

The probability swath of accumulated precipitation

associated with right-moving storms is also examined.

Figure 8 shows probability of the 2-h (from t 5 65 to

185min) accumulated precipitation $ 40mm in the en-

semble forecasts from CTRL, EXP1, EXP2, and EXP3.

Compared to the probability distribution of UH, the

probability distribution of accumulated precipitation

has similar characteristics. After assimilating the envi-

ronmental clear-air radial velocity in EXP2 and EXP3,

the probabilities within the truth precipitation swath can

be increased by more than 40% relative to EXP1

(Figs. 8e,f). Meanwhile, it is noted that the probability is

increased in the latter half of the swath. Specifically,

probability greater than 40% in EXP2 (Fig. 8c) and

greater than 50% in EXP3 (Fig. 8d) approaches the

end of the truth precipitation swath. In comparison,

probability greater than 40% spans only up to one-half

of the truth precipitation swath in EXP1 (Fig. 8b). Such

an improvement of both the UH and precipitation

probability swath forecasts in EXP2 and EXP3 not only

reflects that the improved forecast track of supercell, but

the simulated storm itself is better maintained over a

longer duration.

d. Dynamical diagnostics on the impact of
assimilating clear-air observations

To further provide dynamical understanding of the

impact of assimilating environmental clear-air radial

velocity on the subsequent prediction of storm track

and maintenance, member 7 of the ensemble forecasts

(a member representing the ensemble forecast perfor-

mance through examining the UH and precipitation

forecasts of each member) from CTRL, EXP1, EXP2,

and EXP3 starting from t 5 65 to 185min is selected.

Figures 9 and 10 show the temporal-maximum grid-

point UH and 2-h accumulated precipitation, respec-

tively, for the right-moving storm from the truth

simulation and member 7 of CTRL, EXP1, EXP2, and

EXP3 between t5 65 and 185min. In comparing Figs. 9

and 10 with Figs. 7 and 8, it is seen that member 7 is

representative of the ensemble forecast performance.

Relative to the truth simulation (Figs. 9a and 10a), there

are large displacement errors (;25km) in CTRL with-

out assimilating any radar data (Figs. 9b and 10b). The

displacement errors are reduced significantly in the ex-

periments assimilating radar data only in the precipita-

tion region (EXP1). In other words, assimilating radar

observations in the precipitation region is still more

important than assimilating data in clear-air regions. In

this study, wemainly want to investigate the added value

of assimilating clear-air radial velocity observations on

the forecasting of supercell thunderstorm, in addition to

assimilating radar data within the precipitation region.

Briefly, after assimilating the environment clear-air ra-

dial velocity observations, the UH values and paths in

EXP2 and EXP3 more closely resemble those of the

truth than those in EXP1 (Fig. 9). The accumulated

precipitation forecasts in EXP2 andEXP3 are consistent

with that of the truth simulation in terms of both the

distribution (path direction and length) and intensity,

while the precipitation intensity in EXP1 is not main-

tained well in the later stage (Fig. 10). Therefore, im-

proving the forecast near-storm environmental winds

through assimilating clear-air radial velocity can im-

prove the accuracy of forecast storm structure (rotating

updrafts), duration, and accumulated precipitation.

To further investigate the impact of assimilating clear-

air radial velocity on the subsequent simulation of the

supercell’s dynamic structure and its maintenance and
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propagation, the distributions of temporal–height-max-

imum gridpoint vertical velocity in truth simulation as

well as forecasts of member 7 from CTRL, EXP1, EXP2

and EXP3 during the period t 5 65–185min are also

shown in Fig. 10. In the truth simulation, the strong

updrafts (w. 25m s21) aremaintained along the path of

the heavy surface precipitation ($40mm) to the end of

the examined period (t5 185min, Fig. 10a). However, in

EXP1, the strong updrafts (w . 25ms21) are smaller,

especially near the end of the examined period, resulting

in less surface precipitation (Fig. 10c). In the experi-

ments also assimilating environmental clear-air radial

velocity (EXP2 and EXP3), the sizes of strong updrafts

(w . 25ms21), especially in EXP2, more closely match

FIG. 7. Probability (shaded; %) of temporal-maximum 2–5-km updraft helicity (UH)$ 200m2 s22 for the right-

moving storm in the ensemble forecasts (a) CTRL, (b) EXP1, (c) EXP2, and (d) EXP3 starting from t 5 65 to

185min (forecast period 0–120min). Also shown are the probability differences (e) between EXP2 and EXP1 and

(f) between EXP3 and EXP1. The black contours represent the temporal-maximum gridpoint UH 5 200m2 s22

from t5 65 to 185min of the truth simulation. The x-filled circles indicate the radar location. Minor tick marks are

included every 5 km, and major tick marks are included every 20 km.
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the truth simulation. The strong updrafts (w. 25m s21)

in EXP2 and EXP3 are also maintained throughout the

forecast period, resulting in the similar intensity of sur-

face precipitation as the truth (Figs. 10d,e).

Figure 11 shows the horizontal wind vectors, 3-km

radar reflectivity, and hodographs of truth simulation as

well as member 7 of CTRL, EXP1, EXP2, and EXP3.

Compared to CTRL, the storm structures in EXP1,

EXP2, and EXP3 more closely resemble the truth sim-

ulation after assimilating radar data. The near-storm

inflow environmental winds shown within black boxes in

EXP2 and EXP3 are more similar to truth than EXP1

(Fig. 11), indicating assimilating clear-air radial velocity

can correct environmental wind fields. This benefit can

be seen obviously from the hodographs in Fig. 11f. The

hodographs in EXP2 and EXP3 are closer to the truth

than those in CTRL and EXP1, especially in the lower

levels (Fig. 11f). Therefore, assimilating clear-air radial

velocity corrects the near-storm environmental wind

profiles and environmental wind shear.

FIG. 8. As in Fig. 7, but of 2-h accumulated precipitation $ 40mm. The black contours represent the 40-mm

accumulated precipitation of the truth simulation.
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To investigate the benefits of assimilating clear-air

radial velocity to the dynamics that give rise to verti-

cal acceleration and affect supercell propagation, the

dynamic vertical perturbation pressure gradient force

(VPPGF) is examined. As shown in Markowski and

Richardson (2010), in strongly rotating updrafts of a

supercell, the fluid extension terms do not contribute to

the dynamic VPPGF as much as the z02 and S � =hw
0

terms. Therefore, the dynamic VPPGF can be parsed as

follows:

2
›p0

D

›z
}

1

2

›z02

›z|fflffl{zfflffl}
Nonlinear dynamic forcing

22
›

›z
S � =

h
w0|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Linear dynamic forcing

, (4)

where p0
D is dynamic perturbation pressure, z0 is vertical

vorticity perturbation, =hw
0 5 (›w0/›x, ›w0/›y) is the

horizontal gradient of the vertical velocity perturbation,

and S 5 (›u0/›z, ›y0/›z) is vertical environmental wind

shear. When the terms on the right-hand side (rhs) of

Eq. (4) are positive or negative, the contribution to the

vertical acceleration is respectively upward or down-

ward. The nonlinear dynamic forcing term [the first term

on the rhs of Eq. (4)] is associated with rotation (cyclonic

or anticyclonic). The linear dynamic forcing term [the

second term on the rhs of Eq. (4)]) is associated with the

interaction between an updraft and the environmental

vertical wind shear.

To calculate the linear and nonlinear dynamic VPPGF

terms, we first diagnose p0
D, and its linear component

p0
DL numerically. Following previous studies (Rotunno

and Klemp 1982; Weisman and Rotunno 2000; Parker

and Johnson 2004; Huang et al. 2019), based on the

absence of friction and the anelastic approximation,

the diagnostic dynamic perturbation pressure equation

is given by

=2p0
D 52r

0

"�
›u

›x

�2

1

�
›y

›y

�2

1

�
›w

›z

�2

2w2 ›
2

›z2
(lnr

0
)

#

2 2r
0

�
›y

›x

›u

›y
1

›u

›z

›w

›x
1

›y

›z

›w

›y

�
, (5)

where r0 is the base state of air density. Further, the

velocities are separated into mean and perturbation

components (i.e., u 5 u0 1 u0, y 5 y0 1 y0, and w 5 w0),
and the linear component (p0

DL) of the dynamic per-

turbation pressure equation can be given by

FIG. 9. Temporal-maximum 2–5 km updraft helicity (UH, shaded, m2 s22) for the right-moving storm of (a) the truth simulation and the

member-7 forecast of (b) CTRL, (c) EXP1, (d) EXP2, and (e) EXP3 starting from t5 65 to 185min (forecast period 0–120min). The black

contours represent the temporal-maximum gridpoint UH 5 200m2 s22 from t 5 65 to 185min of truth simulation. The x-filled circles

indicate the radar location. Minor tick marks are included every 5 km, and major tick marks are included every 20 km.

SEPTEMBER 2020 HUANG ET AL . 3837

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/02/21 01:26 PM UTC



=2p0
DL 522r

0

�
›u

0

›z

›w0

›x
1

›y
0

›z

›w0

›y

�
. (6)

We first solve the Poisson equations in Eqs. (5) and (6)

numerically to obtain p0
D and p0

DL for given appropriate

boundary conditions (Coffer andParker 2015;Wang et al.

2016). Then, the residual can be treated as the nonlinear

dynamic perturbation pressure (i.e., p0
DNL 5 p0

D 2 p0
DL)

(Coffer and Parker 2015). Last, the components of the

total dynamic pressure acceleration, the linear dynamic

VPPGF [2(1/r0)(›p
0
DL/›z), hereinafter LD_VPPGF],

and nonlinear dynamic VPPGF [2(1/r0)(›p
0
DNL/›z),

hereinafter NLD_VPPGF], respectively, are calculated.

The VPPGF terms, vertical velocities, and accumu-

lated precipitation fields are shown in Fig. 12 for

the truth simulation and member 7 of EXP1, EXP2,

and EXP3, respectively. The low-level updraft distri-

butions in EXP2 and EXP3 resemble those in the

truth simulation much more than EXP1 (Fig. 12).

For a curved hodograph, lateral updraft propagation

is mainly due to the linear dynamic forcing that is

directed upward on the flank of an updraft. The upward-

directed nonlinear dynamic forcing is usually a maximum

near the updraft axis (Markowski and Richardson 2010).

From Fig. 12, a strong upward-directed LD_VPPGF

is located on the east flank of the updraft and a

downward-directed LD_VPPGF is on the west flank

of the updraft, which promotes the lateral updraft

eastward propagation. The spatial distribution of

LD_VPPGF in EXP2 and EXP3 is more similar to the

truth compared to EXP1, especially the location of

strong LD_VPPGF (.9 3 1023 m s22, marked by

white triangles). These diagnoses indicate assimilat-

ing environmental clear-air radial velocity can cor-

rect forecast environment winds (e.g., environmental

wind shear) and then correct the lateral updraft

propagation through the LD_VPPGF term, thereby

making the supercell propagation, maintenance, and

track closer to the truth (Figs. 9 and 10). As for NLD_

VPPGF, as shown in the last column of Fig. 12, for all

experiments in general the strong upward-directed

NLD_VPPGF is located close to the updraft core

rather than on the updraft flank (Fig. 12). In other

words, the NLD_VPPGF and vertical velocity fields

are approximately in phase (collocated), which can

accelerate vertical motions and maintain updrafts. In

general, all experiments display this collocation. The

magnitude and spatial patterns of NLD_VPPGF in

FIG. 10. As in Fig. 9, but for accumulated precipitation (shaded; mm) and temporal-height-maximum gridpoint vertical velocity (dashed

contour5 25m s21). The black solid contours represent the 40-mm accumulated precipitation of the truth simulation. Magenta-outlined

boxes show the area pictured in Fig. 12, below.
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EXP1 at 1 km more closely match the truth than

EXP2 and EXP3. However, the large positive values

of NLD_VPPGF and updrafts in EXP2 and EXP3

compared to EXP1 are more consistent with the truth

simulation, especially for the locations of updraft and

strong NLD_VPPGF at 3 km AGL (.9 3 1023 m s22,

marked by white stars; Fig. 12). These diagnoses

demonstrate that assimilating environmental clear-air

radial velocity can facilitate improvement of forecast

track and maintenance of the simulated supercell

compared to only assimilating radar radial data in

precipitating regions.

There are two main components responsible for super-

cellmotion: lateral propagation due to the linear/nonlinear

dynamic forcing as discussed above, and advection of the

storm by the mean wind (Markowski and Richardson

2010). Bunkers et al. (2000) proposed an internal dy-

namics (ID) method for predicting supercell motion

using a hodograph, which is physically based, shear-

relative, and Galilean invariant. In the ID method,

FIG. 11. Horizontal wind vectors and radar reflectivity (dBZ) at 3-km height at t 5 95min (30-min forecast) of

(a) the truth simulation and member 7 of (b) CTRL, (c) EXP1, (d) EXP2, and (e) EXP3. Also shown are (f) the

hodographs averaged within the black-outlined boxes shown in (a)–(e) from 1 to 6 km at 500-m intervals.
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FIG. 12. Temporal-averaged (left),(left center) linear and (right center),(right) nonlinear dynamic VPPGF (shaded; 1023 m s22) and

vertical velocity (magenta contours: 2m s21) at 1- and 3-km heights and 30-min accumulated precipitation (black contours: 10, 30, and

50mm) of (top) the truth simulation and member 7 of (top middle) EXP1, (bottommiddle) EXP2, and (bottom) EXP3 during the period

from t5 125 to 155min (forecast period 60–90min). The pictured area is shown by the magenta-outlined boxes in Fig. 10. Tick marks are

included every 10 km. The white triangles and stars show important features that are discussed in the text.
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summing both the advective component and the prop-

agation component, the motion vector of a right-moving

supercell (VRM) is given by

V
RM

5V
mean

1D
V

shear
3 k̂

jV
shear

j , (7)

where Vmean is the mean wind vector, Vshear is the ver-

tical wind shear vector, and D represents the deviation

magnitude orthogonal to the right of the vertical wind

shear vector from the mean wind. In the ID method,

Vmean is estimated by 0–6-km non-pressure-weighted

mean wind, Vshear is calculated by the difference be-

tween the 5.5–6-km mean wind and the 0–0.5-km mean

wind, and D is equal to 7.5m s21. From Figs. 7–9, the

storm paths are adjusted toward the west in EXP2 and

EXP3 relative to EXP1, especially in the early forecast

period. It may bemainly attributed to the correction of

background winds by assimilating clear-air radial ve-

locity observations. Figure 13 shows Vmean, VRM, and

mean supercell motions (VUH) of truth simulation,

member 7 of EXP1, EXP2, and EXP3, respectively.

The zonal component of mean wind in EXP1 is

stronger than the truth simulation and is weakened in

EXP2 and EXP3 by assimilating clear-air radial ve-

locity observations (Fig. 13). Although the VRM in all

experiments are similar to each other, directions of

VRM in EXP2 and EXP3 are closer to that of truth

while VRM in EXP1 deviates to the left of the VRM in

truth. TheVUH in all experiments are characterized by

features that are similar to those of VRM (Fig. 13). It

indicates that assimilating clear-air radial velocity

observations can correct storm motion.

4. Summary

To evaluate the potential value of assimilating PAR

clear-air radial velocity observations for supercell fore-

casts, observing system simulation experiments are

conducted in this study. High-temporal-resolution syn-

thetic PAR observations of a splitting supercell thun-

derstorm are created using the Weather Research and

Forecasting Model. These observations are assimilated

over a 5-min period in different stages of the storm using

ensemble Kalman filter. The main findings are summa-

rized as follows:

1) Assimilating environmental clear-air radial velocity

in addition to clear-air reflectivity improves forecasts

across different stages of the supercell’s life cycle.

The improvement begins about 30min into forecasts

that are initialized at different stages. Moreover, as-

similating the environmental clear-air radial velocity

at 5-min intervals provides forecasts with comparable

skill as those at 1-min intervals in this idealized

case study.

2) Errors in near-storm environmental winds decrease

after assimilating clear-air radial velocity, and the

benefit is carried out to the forecast beyond the

60-min lead time. The increased accuracy of envi-

ronment wind fields also improves the accuracy of

the wind fields within precipitation regions during

the forecast due to the interaction between the storm

and its environment.

3) After assimilating clear-air radial velocity, the prob-

ability forecasts for updraft helicity and precipitation

increase up to 30%–40% within the corresponding

swath of truth simulation. Such improvement is at-

tributed to the improved storm track forecast and

the increased duration of rotating updrafts in the

forecast.

4) Further diagnostics are performed through compar-

ing the linear and nonlinear VPPGFs among all

experiments. It is revealed that assimilating envi-

ronmental clear-air radial velocity improves the

linear dynamic forcing estimation which leads to

better forecast of the lateral updraft propagation.

FIG. 13. The 0–6-km non-pressure-weighted mean wind (V0–6km;

diamonds) and the predicted right-moving supercell motion (VRM;

circles) estimated by using the ID method and hodographs

(Fig. 11f) at t 5 95min (30-min forecast) of the truth simulation

(black) and member 7 of EXP1 (green), EXP2 (red), and EXP3

(blue), respectively. The mean supercell motions (VUH; stars) es-

timated using maximumUH centers at t5 65min (0-min forecast)

and t5 110min (45-min forecast) are also given. Note that VUH in

EXP2 and EXP3 are equal and therefore overlap in the figure. The

dashed lines go through the origin (0, 0) and the centers of V0–6km,

VRM, and VUH in the truth simulation, respectively.
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This improvement allows the supercell to propagate

continuously and more closely to the track of the

truth simulation. Meanwhile, assimilating the en-

vironmental clear-air radial velocity observations

enhances vertical acceleration within the supercell

updraft, and therefore better maintains updrafts

through the improved nonlinear dynamic forcing

estimation. As a result, the size and duration of

strong updrafts in the experiments assimilating

clear-air radial velocity more closely match the

truth simulations. In addition, the correction of

background winds by assimilating clear-air radial

velocity observations also contribute to more ac-

curate storm motion.

In conclusion, this study, to our knowledge, is the first

to explore the impact of assimilating PAR-like clear-air

radial velocity observations on a short-term forecast of a

supercell thunderstorm. As an initial study of this topic,

we perform OSSEs without model error. The positive

impact of assimilating PAR clear-air radial velocity

observations is also only demonstrated with a single

idealized supercell case initialized with a horizontally

homogeneous base state. OSSEs with model error in-

cluded, using more complex environmental conditions

or considering different types of convective modes,

should be considered in the future. In addition, future

studies should examine the effects of radar location and

how well the radar sampling of low-level winds affects

the benefits of clear-air data assimilation. What’s more,

it is also promising to assimilate clear-air velocity data to

target a particular feature, such as misocyclone occur-

rence (Friedrich et al. 2005).
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